Decision Analysis via Granulation Based on General Binary Relation
نویسندگان
چکیده
Decision theory considers how best to make decisions in the light of uncertainty about data. There are several methodologies that may be used to determine the best decision. In rough set theory, the classification of objects according to approximation operators can be fitted into the Bayesian decision-theoretic model, with respect to three regions (positive, negative, and boundary region). Granulation using equivalence classes is a restriction that limits the decision makers. In this paper, we introduce a generalization and modification of decision-theoretic rough set model by using granular computing on general binary relations. We obtain two new types of approximation that enable us to classify the objects into five regions instead of three regions. The classification of decision region into five areas will enlarge the range of choice for decision makers.
منابع مشابه
Invited Review Rough sets theory for multicriteria decision analysis
The original rough set approach proved to be very useful in dealing with inconsistency problems following from information granulation. It operates on a data table composed of a set U of objects (actions) described by a set Q of attributes. Its basic notions are: indiscernibility relation on U, lower and upper approximation of either a subset or a partition of U, dependence and reduction of att...
متن کاملMulti-granulation fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes
This article introduces a general framework of multi-granulation fuzzy probabilistic roughsets (MG-FPRSs) models in multi-granulation fuzzy probabilistic approximation space over twouniverses. Four types of MG-FPRSs are established, by the four different conditional probabilitiesof fuzzy event. For different constraints on parameters, we obtain four kinds of each type MG-FPRSs...
متن کاملChapter 24 GRANULAR COMPUTING AND ROUGH SETS
This chapter gives an overview and refinement of recent works on binary granular computing. For comparison and contrasting, granulation and partition are examined in parallel from the prospect of rough Set theory (RST).The key strength of RST is its capability in representing and processing knowledge in table formats. Even though such capabilities, for general granulation, are not available, th...
متن کاملUncertainty analysis of hierarchical granular structures for multi-granulation typical hesitant fuzzy approximation space
Hierarchical structures and uncertainty measures are two main aspects in granular computing, approximate reasoning and cognitive process. Typical hesitant fuzzy sets, as a prime extension of fuzzy sets, are more flexible to reflect the hesitance and ambiguity in knowledge representation and decision making. In this paper, we mainly investigate the hierarchical structures and uncertainty measure...
متن کاملMGRS: A multi-granulation rough set
The original rough set model was developed by Pawlak, which is mainly concerned with the approximation of sets described by a single binary relation on the universe. In the view of granular computing, the classical rough set theory is established through a single granulation. This paper extends Pawlak’s rough set model to amulti-granulation rough set model (MGRS), where the set approximations a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007